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Iñaki Iturbe-Ormaetxe and Scott L O’Neill
The long-established view of Wolbachia as reproductive

parasites of insects is becoming complicated as an

increasing number of papers describe a richer picture of

Wolbachia-mediated phenotypes in insects. The search for the

molecular basis for this phenotypic variability has been greatly

aided by the recent sequencing of several Wolbachia genomes.

These studies have revealed putative genes and pathways that

are likely to be involved in the host–symbiont interaction.

Whereas significant progress is being made from comparative

genomic studies together with the use of model host

systems like Drosophila, the ultimate linking of phenotype to

genotype will require the development of genetic manipulation

technology for both host and symbiont.
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Introduction
The endosymbiotic a-proteobacterium Wolbachia pipien-
tis was discovered in 1924 in the ovaries of Culex pipiens
mosquitoes [1] and is thought to infect more than 20% of

all insect species [2,3], as well as spiders, mites, terrestrial

crustaceans and most filarial nematode species [4–9],

making it one of the most successful intracellular sym-

bionts yet described. This success has been attributed to

its ability to modify host reproductive biology in order to

favour its own transovarial transmission. The most com-

mon reproductive phenotype induced by Wolbachia in

insects is cytoplasmic incompatibility (CI), a type of

embryonic lethality that occurs when Wolbachia-infected

males mate with females that do not harbour the same

Wolbachia strain [10]. Other common phenotypes include

the selective killing of male offspring [11], the conversion

of genetic males into functional phenotypic females and

the induction of parthenogenesis [10].

The ability of Wolbachia to manipulate host reproductive

biology to its own benefit represents a very successful
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evolutionary strategy, contrary to conventional wisdom

that tightly linked associations should evolve towards

mutualism [12]. Not surprisingly, Wolbachia research

has largely focused on reproductive parasitism traits,

and to some extent this has channelled thinking within

the field so that other phenotypic outcomes of infection

have received less attention. The discovery of obligate

Wolbachia infections in filarial nematodes demonstrated

that some Wolbachia strains also possessed the capability

to act as conventional mutualists, because their removal

disrupts host development, moulting, fertility, viability

and lifespan [13,14]. Indeed it is now clear that Wolbachia
is able to influence host biology in a number of different

ways beyond reproductive parasitism.

Phenotypic variability
Examples of this complexity have recently been demon-

strated in the parasitoid wasp Asobara tabida where the

production of oocytes and their development into viable

offspring is dependent on the presence of Wolbachia [15].

In this case Wolbachia seems to act by influencing pro-

grammed cell death processes, preventing apoptosis of

nurse cells and allowing oocyte maturation [16��]. A

similar observation was recently made in the date stone

beetle Coccotrypes dactyliperda [17�], where virgin females

fed on antibiotics showed arrested oogenesis. In this study

a Rickettsia-like symbiont was found, as well as Wolbachia,
and the relative roles of each symbiont in the observed

phenotype has yet to be determined. The interaction of

Wolbachia with host oogenesis processes has also been

observed in Drosophila, where Wolbachia infection has

been shown to rescue mutations in the sex-lethal (Sxl)
gene [18], a splicing and translational regulator involved

in somatic sex determination, oogenesis and meiotic

recombination. Other studies in Drosophila suggest that

Wolbachia might interact with chico, a gene encoding an

insulin receptor substrate involved in growth regulation

[19�]. In this case some chico alleles are lethal in the

absence of the Wolbachia infection. Whether this effect

is directly associated with chico or another gene that

interacts with chico is not clear at present.

Wolbachia infections have also been implicated in influ-

encing a number of fitness traits, sometimes in apparently

contradictory ways. In some cases, such as in the para-

sitoid wasp Leptopilina heterotoma, Wolbachia can nega-

tively affect fecundity, locomotor performance and

longevity [20]. In Drosophila simulans, Wolbachia has been

reported to reduce sperm production [21]. On the con-

trary, single and double Wolbachia infections have been

reported to improve fecundity in Aedes albopictus [22] and

in both Drosophila melanogaster and D. simulans, infections
Current Opinion in Microbiology 2007, 10:221–224

mailto:scott.oneill@uq.edu.au
http://dx.doi.org/10.1016/j.mib.2007.05.002


222 Ecology and industrial microbiology
have been reported to induce variable fecundity and

longevity effects depending on the genetic strain of fly

used [23,24�].

A further complication in Wolbachia biology is the obser-

vation that some strains have not been shown to induce any

phenotype that can help explain their presence in host

populations, for example the wAu strain that infects

D. simulans [25] or the global selective sweep of wMel in

D. melanogaster [26�]. In the absence of substantial hori-

zontal transmission these Wolbachia must affect hosts in

ways that are not apparent at the present time, presumably

through mechanisms unrelated to reproductive parasitism.

Wolbachia genomics
Whereas our understanding of the phenotypic outcomes

of Wolbachia infection is rapidly expanding, our knowl-

edge of the molecular mechanisms that mediate these

outcomes is very rudimentary. A key step forward has

been the recent sequencing of two complete Wolbachia
genomes, that of the wMel strain that induces CI in

D. melanogaster [27��] and that of the wBm strain, an

obligate mutualist of the filarial nematode Brugia malayi
[28��]. Various other genomes representative of the phe-

notypic diversity of Wolbachia are currently the focus of

different sequencing projects and will soon provide a

wealth of additional data [29]. In addition, useful Wolbachia
genomic information has been obtained recently by data

mining the sequencing projects of host insects that are

infected with Wolbachia [30�].

The comparative value of these genomic data is being

enhanced as whole genome sequences of closely related

pathogens that don’t cause any of the same phenotypes as

Wolbachia, such as several species of Rickettsia [31–33],

Anaplasma marginale [34] and Ehrlichia rumiantium [35],

are becoming available. The comparison of Wolbachia
with these genomes will assist with the identification

of the molecular basis underlying the various phenotypes.

In addition, ongoing projects to sequence unrelated sym-

biont genomes that induce similar phenotypic effects in

hosts will be of great interest. For example, the future

sequencing of Cardinium hertigii, an arthropod symbiont

not related to Wolbachia but that induces most phenotypes

traditionally associated with Wolbachia, such as CI [36,37],

parthenogenesis [38] and feminization [39], will provide

valuable comparative insights.

To date the analysis of Wolbachia genomes has revealed the

loss of multiple metabolic pathways, the abundance of

repetitive DNA and the presence of a series of genes with

potential roles in host interaction [27��,28��]. For example,

the wMel genome contains a large number of genes that

have variable numbers of ankyrin domains that appear to

be candidates for involvement in the cytoplasmic incom-

patibility phenotype [40��]. These genes are quite com-

mon in Wolbachia but very rare in most other known
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bacterial genomes [41]. Comparative analysis of ortholo-

gues of these genes in different Wolbachia strains infecting

both Drosophila and Culex pipiens has shown them to be

extremely variable [40��,42��]. This variation was reflected

in the following: first, the presence/absence of transmem-

brane domains, probably affecting their subcellular local-

ization; second, the number of ANK repeats, probably

affecting the strength and/or specificity of their interaction

with other proteins; and third, the absence of particular

orthologues, or their disruption by insertion elements, in

Wolbachia strains that are known to be incapable of indu-

cing CI. The prevalence of these ANK genes in Wolbachia,

their potential role in protein–protein interactions, and the

results of comparative analyses suggests that they are

probable candidates to be involved in host communication

and potential reproductive phenotypes.

Analysis of genome data has also revealed that in Wolba-
chia numerous prophage genes are present and that

phages are likely to play a significant role in the ecology

of Wolbachia through the regulation of infection densities

within hosts [27��,43��]. A correlation between sequence

variability in phage structural genes and the expression of

reproductive phenotypes has yet to show a relationship

between particular phage infections and reproductive

phenotypes [44,45]; however, a role for phage-associated

genes, such as some ANK genes or virulence determi-

nants cannot be excluded.

Genome sequencing has also revealed the presence of

complete operons encoding Type IV secretion systems in

both wMel [27��] and wBm [28��] genomes. A better

understanding of these secretion systems and the effector

molecules they translocate will be fundamental to a

future understanding of host–symbiont interactions.

Conclusions
The ability to use the genetic tools of Drosophila in the

analysis of host–symbiont interactions has the potential to

greatly accelerate our progress in understanding how Wol-
bachia generates host phenotypes. For example, a subtrac-

tive hybridisation approach has been used recently to

identify host genes whose transcription is altered by the

presence of Wolbachia [46��]. One gene found with this

approach was the non-muscle myosin II gene zipper, which

was found to be upregulated in Wolbachia-infected

D. simulans. Subsequent overexpression of this gene in

D. melanogaster was shown to mimic the CI phenotype in

the absence of Wolbachia indicating a potential functional

role. However, Wolbachia infection was unable to rescue

the effect in examined lines. A derivation on this exper-

imental approach is the potential expression of Wolbachia
genes directly in Drosophila to examine possible pheno-

types.

However the ultimate confirmation of the functional role

of Wolbachia genes in host interactions requires the ability
www.sciencedirect.com
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to directly manipulate the Wolbachia genome. Currently,

Wolbachia gene function can only be inferred from

comparative genomics or assessed using model-host

genetic tools or heterologous expression systems. Recent

advances in the development of Wolbachia genetic trans-

formation methodologies using targeted homologous

recombination (Iturbe-Ormaetxe, unpublished) creates

optimism that these tools will soon be available.
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