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Abstract

We examined changes in the abundance of immature Aedes aegypti at the household and water storage container level
during the dry-season (June-July, 2008) in Tri Nguyen village, central Vietnam. We conducted quantitative immature
mosquito surveys of 171 containers in the same 41 households, with replacement of samples, every two days during a 29-
day period. We developed multi-level mixed effects regression models to investigate container and household variability in
pupal abundance. The percentage of houses that were positive for I/II instars, III/IV instars and pupae during any one survey
ranged from 19.5–43.9%, 48.8–75.6% and 17.1–53.7%, respectively. The mean numbers of Ae. aegypti pupae per house
ranged between 1.9–12.6 over the study period. Estimates of absolute pupal abundance were highly variable over the 29-
day period despite relatively stable weather conditions. Most variability in pupal abundance occurred at the container rather
than the household level. A key determinant of Ae. aegypti production was the frequent filling of the containers with water,
which caused asynchronous hatching of Ae. aegypti eggs and development of cohorts of immatures. We calculated the
probability of the water volume of a large container (.500L) increasing or decreasing by $20% to be 0.05 and 0.07 per day,
respectively, and for small containers (,500L) to be 0.11 and 0.13 per day, respectively. These human water-management
behaviors are important determinants of Ae. aegypti production during the dry season. This has implications for choosing a
suitable Wolbachia strain for release as it appears that prolonged egg desiccation does not occur in this village.
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Introduction

Dengue affects 50 million people annually with approximately

20,000 deaths [1]. Four antigenically related but distinct viruses

are transmitted principally by the mosquito Aedes aegypti (L.).

Because there is no vaccine available, vector control remains the

cornerstone of epidemic prevention and control [2,3].

Control of Ae. aegypti using virulent strains of Wolbachia has

gained impetus due to life-shortening [4] and/or viral interference

[5] phenotypes observed after successful micro-injection of Ae.

aegypti with wMel and wMelPop strains in the laboratory. In the

summer of 2011, wMel-infected Ae. aegypti adults were successfully

released into two field localities around Cairns, Australia [6],

demonstrating the feasibility of Wolbachia-based dengue control

strategies under field conditions.

To trial a Wolbachia-based control strategy in Vietnam, the

village of Tri Nguyen has been selected by the Ministry of Health

as a potential release site for wMelPop-CLA (a mosquito cell-line

adapted isolate of wMelPop) transinfected Ae. aegypti. This village is

located on Hon Mieu Island, approximately 1 km off the coast of

central Vietnam. This wMelPop-CLA strain causes several fitness

effects on Ae. aegypti [3] including reduced fecundity due to life-

shortening and reduced ability of eggs to withstand desiccation [7],

two phenotypes that could hinder the establishment of the

wMelPop-CLA transinfected Ae. aegypti, particularly over the dry

season. It has been suggested that in tropical areas such as

Thailand and Vietnam, where abundant breeding sites are

regularly filled by rainfall and/or by human manipulation, the

wMelPop-CLA strain may spread and persist in Ae. aegypti [7].

Thus one of the goals of this paper was to examine the effect of

human water manipulation behaviours on Ae. aegypti populations in

this village during the dry season.

From the results of nine entomologic surveys conducted over 14

months, we determined that village-wide spatial patterns in Ae.

aegypti presence and abundance in houses were considerably

heterogeneous [8]. Importantly, key premises were present with

high numbers of mosquitoes, although in contrast to North

Queensland [9] and Trinidad [10], these were not temporally

stable. In Vietnam, the pattern observed over 14 months suggested

that at the household level, Ae. aegypti production displayed a

cohort or pulse effect, rather than production being continuous

and overlapping between mosquito generations. Surprisingly,

there was no clear association between season and the prevalence

or abundance of Ae. aegypti immatures (larvae or pupae) or adults,

even though central Vietnam experiences distinct wet (September

– December) and dry seasons (February – August) [8]. This lack of
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a clear association between season and Ae. aegypti abundance was

noted in the analysis of long-term Ae. aegypti data from Puerto Rico

and Thailand. Mosquito populations in those two countries were

sensitive to different environmental factors (rainfall in Puerto Rico,

temperature in Thailand), probably a reflection of local habitat

differences and adaptation to unique seasonal environments

(distinct wet- and dry-seasons in Thailand, but not in Puerto

Rico) [11].

Our study aimed to examine the abundance of Ae. aegypti in a

village in central Vietnam during the dry season in relation to

householder water storage management. Specifically, we wanted

to know how frequently householders were filling or emptying

their containers, and whether this was sufficient to maintain Ae.

aegypti populations during a period when little rainfall was

expected. This information will be useful in a control program

based on the use of wMelPop-CLA transinfected Ae. aegypti, which

has a phenotypic disadvantage whereby the eggs have reduced

desiccation resistance [7]. We sampled a cohort of 171 containers

at 41 houses, measuring Ae. aegypti production every 2 d for almost

a month and recording water volume changes in containers. We

then used multi-level models to determine whether household- or

container-level factors contributed more to Ae. aegypti abundance.

Materials and Methods

Ethics
All necessary permits were obtained for the described field

studies. Informed verbal consent was obtained from the head of

each household according to the Institute Pasteur Nha Trang

ethics policy. Although samples had to be returned to the

containers after each survey, all mosquito immatures were

discarded after the survey on day 29.

Study Site
The area chosen for this study was the village of Tri Nguyen, on

Hon Mieu island (12o18’N, 109o14’E), Khanh Hoa province,

central Vietnam. A description of the features of the village,

cultural practices, occupations and a map, can be found in a report

of our long-term entomological survey of this island [8]. In 9

surveys from November 2006–December 2007, large water

storage containers (moulded tanks, cylindrical tanks, box tanks

and large jars) contained 97–100% of the standing crop of third

and fourth instars, and 93–100% of pupae. Small containers such

as discards, vases and ant traps contained ,5% of production.

House type, education level, occupation, income and water

management behavior were recorded by the survey staff at this

time.

Entomologic Surveys
The current study was undertaken in June-July 2008 to define

the short-term temporal variability in immature Ae. aegypti

production at the household and container level. Forty-one houses

(6.7%) were randomly selected from a geo-referenced database

containing information on the 611 houses in Tri Nguyen village

[8]. These houses were then surveyed every 2 d, for a total of 29 d,

by two teams of 2–3 people. The 2-day sampling period was

chosen as it matched the minimum duration of the pupal stage

[8,12] so that cohorts were not missed. On the day of the first

survey, containers located in and around each house were marked

with a unique identification number so these could be tracked

throughout the study, and any new ones recognized. Every 2 d, the

volume, source and use of water, location of the container, and lid

status (full, partial or no cover) was recorded for each container.

All wet containers were then sampled (either with the 5 sweep net

method or pipette) [13]. For both Aedes and Culex spp. immatures,

presence/absence of I/II instars and the approximate number of

III/IV instars (0, 1–10, 11–100, 101–1000, 1000+) were recorded.

The number of pupae were counted. Presence or absence of

potential mosquito predators (principally Mesocyclops spp., Micro-

necta spp. and fish) was also recorded. The sample was then

returned to the container. On each sampling occasion, the height

of the water level in each container was estimated using a

graduated rule. The height was then used to calculate the volume

of water in each container and this was expressed as a percentage

of the total capacity. Percentage change between successive

surveys was used to measure water flux.

Because of the large size and configuration of the containers,

plus their usage patterns [13], it was not possible to estimate

oviposition and egg hatching using paper strips [14,15]. Conse-

quently, a modelling approach was adopted using pupal counts.

We assumed that the main factor influencing pupal abundance is

water level changes triggering egg hatching, although we

acknowledge that unmeasured variables such as overcrowding,

nutrient levels and egg-laying behaviours can influence immature

abundance. We also acknowledge that water-level changes may

have occurred without our knowledge in the period between visits

every 2 d and that these may have also influenced immature

abundance.

For the water volume analyses, 171 containers within the 41

properties were classified as either large (.500 L, n = 119) or small

(,500 L, n = 52). A variable was created to indicate water flux,

categorized according to whether the volume of water had

increased by .20%, decreased by .20% or neither increased or

decreased by .20%, relative to the previous survey. Daily rainfall

(mm) and daily minimum, mean and maximum temperatures (uC)

were obtained from Nha Trang city weather station (Figure 1).

June/July is the dry and hot season in central Vietnam and there

were only three rain events .5 mm during the survey period.

Multi-level Model of Pupal Abundance
Pupal abundance was highly aggregated because a large

proportion (range 76.8–94.8%) of the containers during any one

survey was negative for pupae. We investigated different types of

models of the pupal counts, including a Poisson model, a negative

binomial model and a zero-inflated Poisson (ZIP) model and found

that the ZIP model provided the best fit to the data (using the

Akaike Information Criterion and the Vuong statistic). Conse-

quently, we used a ZIP mixed effects model to examine the

relationship between water volume changes and pupal abundance.

This allowed us to incorporate both the Poisson structure of the

distribution of pupal counts (which includes some zeroes) and a

zero-inflated component that modelled the excess negative

containers.

The model took the form:

Yijk ~ Pois(mijk);

mijk~Zijk � lijk;

Zijk ~ bern(pijk);

Logit(pijk)~b0zb1C1,ijkzb2C2,ijkzb3tkzuiznj ;

Log(lijk)~d0zd1C1,ijkzd2C2,ijkzd3tkzwizzj ;
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where Y was the observed number of pupae in container i,

household j, survey k, m was the modelled mean number of pupae,

Z represented the excess zeroes in the observed pupal distribution,

and l the count of pupae. For the zero-inflated part of the model,

b0…2 were the intercept and coefficients for the fixed effects (two

dummy variables representing categories of water level change: C1

an increase in water volume $20% relative to the last survey and

C2, a decrease in water volume $20% relative to the last survey,

with the reference category being a change in water level of

,20%, and a term for temporal trend), ui was a container-level

random effect and vj was a household-level random effect.

Similarly, for the count part of the model, d0…2 were the intercept

and coefficients for the fixed effects (as above), wi was a container-

level random effect and zj was a household-level random effect.

Because change in container water volume was assessed relative to

the previous survey, we only used data from surveys 2–15 in the

models. We specified non-informative priors for the intercepts and

coefficients (normal priors with a mean of 0 and a precision, the

inverse of variance, of 1/10,000). All of the random effects were

assumed to have a normal distribution centred on zero, and with

an unknown precision modelled with non-informative gamma

priors (having shape and scale parameters = 0.01).

We used a Markov chain Monte Carlo simulation to fit the

models. A burn-in of 5,000 iterations was allowed, followed by

100,000 iterations where values for the intercept, coefficients, and

the means and variance of the random effects were monitored and

stored. To reduce autocorrelation in the chains, only every 10th

iteration was stored, giving a total of 10,000 iterations for the

posterior distribution of each monitored variable. Convergence

was checked by visual examination of density and history plots. To

ensure that sufficient iterations were performed to adequately

describe the posterior distributions, Monte Carlo error (MCE)/SD

was calculated for each variable. If this value was ,0.05 for each

parameter, we considered the number of iterations to be sufficient

[16]. Random effects were considered significant at the 5% level

when the 95% credible intervals excluded zero. All analyses were

performed using WinBUGS version 1.4 (Imperial College,

London, and Medical Research Council, UK).

Results

Descriptive Analyses
The mean number of people per house was 5.6 (range 1–13).

Water was stored in containers ranging in size from ,100–

10,000 L. Containers were replenished by purchasing water or by

channelling rain water from the roof into selected containers.

There were 195 containers identified in the 41 households (mean

of 4.8 per household) of which 171 were examined at every time-

point (i.e. 15 times). The remaining 24 containers were excluded

from further analyses because they were not surveyed 15 times.

This was due to householders switching their containers to non-

water storage uses at some stage during the survey period. Any

residual water was usually poured into another container. There

were no new containers introduced during the study period.

Of the 171 containers, 17 (9.9%) were moulded tanks (2000 L

capacity), 91 (53.2%) were cylindrical tanks (1000–2000 L

capacity), 11 (6.4%) were box tanks (100–10,000 L capacity), 42

(24.6%) were standard jars and drums (.100 L capacity), and 7

(5.0%) were small jars (including buckets) (,100 L capacity).

Almost all of the containers (98%) were located outdoors with

those indoors mainly used during routine daily activity. As with

previous surveys [8], numbers of predators were low, ranging from

0–4%.

Temporal Patterns
The total estimated number of pupae collected from all houses

ranged from 77 on day 1 (mean of 1.9 per house) to 517 on day 29

(mean of 12.6 per house) (Figure 1). The percentage of containers

that were wet during each survey ranged from 72.8–82.1%. The

trend in volume of water stored over the 29 days was generally

decreasing (a reduction from 102,000 to 75,000 L) but regular

water replenishment was evident in both large and small

containers (Figure 1). Increases of .20% in the volume of water

in containers, compared with water volume observed during the

previous survey period, could be seen during all sampling periods.

This was due to householders either purchasing water from

vendors or by consolidating stored water into fewer containers.

Two of the three rain events on days 21 (5.6 mm) and 25 (6.1 mm)

had a negligible effect on the filling of containers (only 13% of

small and 8% of large containers had increases in water volumes of

$20% on day 21, and 21% of small and 8% of large containers

increased by $20% on day 25). However, the rainfall event on day

18 (12.5 mm) resulted in the highest rates of container filling, with

increases in water volumes $20% in 48% of small containers and

17% of large containers. The latter event resulted in a 2.3 to 6.6-

fold rise in pupal abundance 11 d later, from between 1.9 and 5.6

pupae per house on days 1–18, to 12.6 pupae per house on day 29.

In terms of container-level water volume changes observed

during each survey, there were 304 events where water volume

increased $20%, 410 events where water volume decreased

$20%, and 1851 events in which water volumes did not vary by

$20%, compared to the previous survey. Water volume changes

occurred every day, with a range of 9.6–48.1% of small containers

being filled and 15.4–34.6% being reduced by $20%, respective-

ly, and 4.2–16.8% and 7.6–21.8% of large containers being filled

or reduced by $20%, respectively. The percentage of small and

large containers whose volume did not change by $20%

compared with the previous survey, ranged from 36.5–75.0%

and 68.0–83.2%, respectively (Figure 1). The probability of the

water volume of a large container (.500 L) increasing $20% was

0.05 and decreasing $20% was 0.07 per day. For small containers

(,500 L) it was 0.11 (increasing) and 0.13 (decreasing) per day.

The percentage of houses and containers that was positive for

pupae during any one survey ranged from 17.1–53.7 and 5.2–

21.4%, respectively. However, by the end of the 29 d, 87.8% of

houses and 46.2% of containers had been recorded as positive

(Table 1), indicating that even in a short time frame, most houses

and almost half of all containers had or were producing pupae.

Similar patterns were observed for I/II and III/IV instars.

Interestingly, seven (17.1%) houses were positive for III/IV instars

at every time point but no houses were consistently positive for I/

II instars or pupae. Only one container was consistently positive

for III/IV instars at every time point and no containers were

consistently positive for I/II instars or pupae. There were also a

proportion of houses (5%) and containers (40%) that remained

consistently negative for immature Ae. aegypti throughout the entire

study (Table 1).

Statistical Analysis
The Bayesian hierarchical model showed that there was more

variation in pupal abundance at the container level compared with

Figure 1. Absolute counts of pupae every 2 days, in relation to water flux, water storage and weather conditions.
doi:10.1371/journal.pone.0039067.g001
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the house level for both the zero-inflated and count components of

the model (Table 2). Containers where the water volume increased

relative to the previous survey had a significantly higher count of

pupae (if pupae were present) and the counts of pupae showed a

significantly increasing trend over the study period.

A significant container-level random effect indicated that there

were unmeasured variables acting at the container level that

influenced pupal presence and abundance (note, values of the

random effects are not shown). For the zero-inflated component of

the model, no containers had random effects significantly lower

than the overall mean and 21 containers had random effects

significantly greater than the overall mean (i.e. they were more

likely than average to have a zero count). For the count

component of the model, 5 containers had random effects

significantly lower than the overall mean and 20 containers had

random effects significantly greater than the overall mean (i.e. they

had a significantly higher than average count). None of the

household-level random effects were significantly different from

the mean (they all had 95% Bayesian credible interval limits that

included zero).

Discussion

Because piped water was unavailable, villagers in Tri Nguyen

relied on water management, water purchase and occasionally

rainfall to fill a variety of containers ranging from 100–10,000 L.

Not surprisingly, our data provide evidence that frequent filling of

containers is positively associated with the abundance of Ae. aegypti

pupae. Despite the relative lack of rainfall and a reducing but

fluctuating water volume, there were enough filling events (304

over 29 days) to support hatching of the desiccation-resistant eggs

of Ae. aegypti inside these containers and thus ensure survival and,

sometimes, population growth, although the most significant

increase in pupal abundance followed 12.5 mm of rainfall on day

18. Overall, this suggests that if wMelPop-CLA transinfected Ae.

aegypti are released in Tri Nguyen village, there will be sufficient

water filling events from everyday householder behaviours to

minimise the effect of the reduced desiccation resistant phenotype.

Thus, this might support the release of wMelPop-CLA mosquitoes

during the wet season, and their survival through the dry season.

Over the 14-month study period reported in our previous work,

the percentage of houses positive for III/IV instars and pupae

ranged from 54–81 and 13–48%, respectively [8]. This is similar

to the equivalent ranges we observed over the one-month period of

the current study (49–76 and 17–54%, respectively). In terms of

container positivity for III/IV instars and pupae, the 14-month

range (26–49 and 6–22%, respectively) was similar to the one-

month range found in the current study (20–37 and 5–21%,

respectively).

Stoddard [17] indicated that human behavior is an under-

studied aspect of vector control and disease management. Our

work suggests that water storage behavior, particularly in relation

to human-driven water volume changes at the container-level and

over small temporal scales, is an important driver of Ae. aegypti

population dynamics. Although other studies have been under-

taken on water storage practices and behaviors in Vietnam, these

have focussed primarily on changes in human perceptions of water

supply and changes in water storage behavior subsequent to the

provision of new water supply infrastructure [18]. Our study was

concerned with existing infrastructure and cultural practices of

water storage. Upon questioning of householders after changes in

water level $20%, it was apparent that we had observed a

continuous practice of householder transfer of water, and not

surprisingly, asynchronous hatching of Ae. aegypti eggs and

subsequent development of cohorts of immatures. The relatively

low percentage of immature positivity on any one day for houses

and, to a lesser extent, containers, compared to the high

cumulative house or container positivity at the end of the 29 day

Table 1. Percentage of houses and containers positive or negative for immature Ae. Aegypti.

Houses (%) Containers (%)

Range +ve during
the surveys Cumulative +ve Always –ve

Range +ve during
the surveys Cumulative +ve Always –ve

I/II instars 19.5–43.9 90.2 9.8 6.3–20.0 56.1 43.9

III/IV instars 48.8–75.6 92.7 7.3 20.3–37.0 63.7 36.3

Pupae 17.1–53.7 87.8 12.2 5.2–21.4 46.2 53.8

All stages 5.0 40.0

doi:10.1371/journal.pone.0039067.t001

Table 2. Results from the analysis of Ae. aegypti pupal abundance using a zero-inflated Poisson model in a Bayesian framework.

Variable Zero-inflated component Count component

Intercept –3.58 (–4.18– –3.02) 1.45 (1.17–1.72)

Coefficient: increasing volume –0.48 (–1.04–0.06) 0.95 (0.79–1.11)*

Coefficient: decreasing volume 0.16 (–0.30–0.60) 0.06 (–0.07–0.19)

Coefficient: temporal trend 0.04 (–9.961024–0.08) 0.06 (0.04–0.07)*

Variance container RE 2.43 (1.50–4.14) 0.78 (0.53–1.24)

Variance household RE 0.06 (0.01–1.19) 0.03 (0.01–0.32)

*Significant with $95% probability; RE = random effect; estimates show the mean and 95% Bayesian credible interval.
doi:10.1371/journal.pone.0039067.t002
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period, is indicative of the asynchrony of Ae. aegypti cohorts across

the village.

The frequency of container filling events (n = 304) was 26%

fewer than water draw-down events (n = 410). Although we

selected 20% as a definite and observable water volume change,

we acknowledge that water level increases smaller than this would

also be capable of causing egg hatching, indicating one limitation

of the study. We chose 20% as a cut-off because we were

evaluating broad patterns of water management, and whether or

not these were sufficient to maintain Ae. aegypti populations during

a period when little rainfall was expected. Since we observed that

there were enough water volume changes to support Ae. aegypti

populations, any smaller changes that we may have overlooked

would most likely have an additive effect and so our measurements

of water flux are most likely underestimates. Hatching could even

be initiated by disruption of the water surface during the retrieval

process by householders, but this also could not be measured with

any precision. Despite this, it appears unlikely that Ae. aegypti relies

on prolonged desiccation resistance at Tri Nguyen through the dry

season.

Although further investigation of this effect is required, it would

seem that such behavior should be incorporated into Ae. aegypti

population models such as CIMSiM [19,20] and Skeeter Buster

[21] to ensure they are realistic, accurate and location specific.

This concurs with findings in Colombia [22] and Puerto Rico [23].

Given that more variability in pupal abundance occurred at the

container level, any pre-release vector control needs to focus on all

containers in the target area, and not just on key containers or

high-mosquito burden households, because we saw little evidence

for their existence. As in Iquitos [24], high productivity, whether in

containers or households, was transient. Our data also suggest that

in Tri Nguyen village, container level variability was more

important than household level data. As in Iquitos [24], we have

previously demonstrated that the correlation between pupal and

adult abundance is the strongest [25], so we believe our estimates

are robust. Although we acknowledge that we only studied a small

number of houses, our models also suggest that there were

significantly more unmeasured variables at the container level

influencing pupal abundance, compared to the household level.

We expect that this would be applicable to other immature stages.

Thus as with other studies [22,23], human water management

practices would seem to be a previously underrated factor in

driving container productivity of Ae. aegypti.
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