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Many insects and other arthropods harbor maternally inherited bacteria inducing “cytoplasmic incompatibility” (CI), reduced egg

hatch when infected males mate with uninfected females. CI-causing infections produce a frequency-dependent reproductive

advantage for infected females. However, many such infections impose fitness costs that lead to unstable equilibrium frequencies

below which the infections tend to be eliminated. To understand the unstable equilibria produced by reduced lifespan or lengthened

development, overlapping-generation analyses are needed. An idealized model of overlapping generations with age-independent

parameters produces a simple expression showing how the unstable point depends on the population growth rate, the intensity of

CI, and the infection’s effects on development time, longevity, and fecundity. The interpretation of this equilibrium is complicated

by age structure. Nevertheless, the unstable equilibrium provides insight into the CI-causing infections found in nature, and it

can guide potential manipulations of natural populations, including those that transmit diseases, through the introduction of

infections that alter life-table parameters.
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Many arthropods, including insects, spiders, and mites, harbor

maternally inherited bacteria, assigned to the genera Wolbachia

and Cardinium, that make infected males reproductively incom-

patible with uninfected females (Hoffmann and Turelli 1997;

Werren 1997; Zchori-Fein and Perlman 2004). In diploids, em-

bryos produced from fertilizations of uninfected ova by sperm

from infected males typically show significantly lower hatch rates

than embryos produced from the three other possible fertilizations.

Because the bacteria that cause this cytoplasmic incompatibility

(CI) are generally maternally transmitted, CI often produces a

reproductive advantage for infected females, leading these infec-

tions to spread within and among populations (Turelli and Hoff-

mann 1991, 1995). However, CI-causing bacteria often produce

other phenotypic effects, such as reduced fecundity or longevity

(Weeks et al. 2002), that inhibit their spread when they are rare

(so that few incompatible matings occur).

Caspari and Watson (1959) first mathematically analyzed

the expected frequency dynamics of CI-causing infections. For

infections that impose no fitness costs, they found that fre-

quencies should always tend to increase. However, by assum-

ing that the infections might reduce fecundity (an assumption

which then had no empirical support), they found that the com-

bination of frequency-dependent reproductive advantage from CI

and frequency-independent fecundity costs produced an unstable

equilibrium frequency that must be exceeded for the infection

frequency to tend to increase. Other fitness costs (or imperfect

maternal transmission, Fine 1978; Hoffmann et al. 1990) pro-

duce similar “bistable” dynamics, in which both uninfected and

(highly) infected populations remain stable to small changes in

infection frequency.

Min and Benzer (1997) discovered a Wolbachia variant in a

laboratory population of Drosophila melanogaster that roughly
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halves life expectancy (cf. Reynolds et al. 2003). This led

Brownstein et al. (2003) to suggest that life-shortening Wolbachia

might be applied to control vector-borne diseases, such as dengue

fever, that are transmitted only by the oldest vector age classes.

Although the unstable equilibrium associated with such infections

can be approximated numerically (Rasgon et al. 2003; Rasgon and

Scott 2004), an analytical treatment can more clearly reveal how

the unstable point depends on various demographic factors. Given

that relatively few CI-causing infections have been studied thor-

oughly in nature (Weeks et al. 2002), effects on development time

and/or adult longevity may be common. Such effects cannot be

understood in terms of the discrete-generation analyses of Caspari

and Watson (1959), Fine (1978) or Hoffmann et al. (1990).

I present an analytical treatment of frequency dynamics for

CI-causing infections in a random-mating population with over-

lapping generations, but no age-dependent effects. The analy-

sis illuminates general conditions for bistability and shows how

various demographic effects alter the position of the unstable

equilibrium. Interpreting this equilibrium is complicated by age

structure. Nevertheless, understanding how the unstable point de-

pends on life-table parameters is important, because the position

of the unstable point determines whether such infections will

tend to spread spatially once they are established in a sufficiently

large local population (Barton 1979; Turelli and Hoffmann 1991;

Hofbauer 1999). Thus, knowing how the unstable point varies

with demographic effects should help us understand natural CI-

causing infections and may guide the use of such infections to

manipulate natural populations.

Models and Analyses
For algebraic simplicity, I assume perfect maternal transmission,

i.e., an infected mother produces only infected eggs. This is a

reasonable approximation for mosquitoes in nature carrying sin-

gle Wolbachia infections (Kittayapong et al. 2002; Rasgon and

Scott 2003), but not for other taxa, such as Drosophila simulans

and D. melanogaster, whose infected females produce several

percent uninfected eggs in nature (Turelli and Hoffmann 1995;

Hoffmann et al. 1998). Apart from inducing CI, I assume that

these infections affect only fecundity, development time, and/or

longevity and that the effects on longevity and development time

are sex independent. In fact, Wolbachia may affect other aspects

of host biology, possibly including mating behavior (Champion

de Crespigny and Wedell 2007) and sperm competition (Wade and

Chang 1995; Champion de Crespigny and Wedell 2006). All of

these complications, including imperfect maternal transmission,

can be introduced into the mathematical framework provided, but

the resulting equilibrium formulas are much less transparent.

I first introduce and review the standard discrete-generation

model with only fecundity effects and CI. This serves as a ref-

erence point for understanding the consequences of overlapping

generations. For simplicity, I focus on deterministic dynamics,

even though stochastic effects can be important to the initial estab-

lishment of infections subject to bistable dynamics (Jansen et al.

2008). Table 1 provides of glossary of notation used throughout

the article.

DISCRETE GENERATIONS

In the notation of Hoffmann et al. (1990), the Caspari and Wat-

son (1959) model can be described as follows. Denote infected

individuals by I and uninfected by U. Let F denote the average

fecundity of an I female relative to a U female. We assume that

generally F ≤ 1, even though Wolbachia infections can sometimes

increase fecundity (Weeks et al. 2007; Brownlie et al. 2009), and

set sf = 1 − F. Let H < 1 denote the hatch rate from an incompat-

ible cross, U♀ × I♂, relative to the three other possible crosses,

which are assumed to produce equal hatch rates, and set sh = 1

− H. Thus, sh quantifies the intensity of CI, and sf quantifies the

fecundity cost of the infection. Letting pt denote the frequency of

infected adults in generation t, it is easy to see (e.g., Table 2 of

Turelli 1994) that

�p = pt+1 − pt = sh pt (1 − pt )(pt − p̂)

1 − sf pt − sh pt (1 − pt )
, with (1)

p̂ = sf /sh . (2)

For initial frequencies below p̂, pt → 0 as t increases, whereas

for p0 > p̂, pt → 1. The unstable point, p̂, is simply the ratio of

the fecundity cost to the intensity of CI. For fecundity-enhancing

or fecundity-neutral infections (i.e., F ≥ 1), sf ≤ 0; such infec-

tions will tend to spread from any initial frequency. In contrast,

infections with sf > 0 must somehow get past the unstable point

to become established (Jansen et al. 2008). If sf ≥ sh, �p < 0

for all 0 < p < 1, hence only infections with sf < sh should be

observed in nature, unless the infections provide additional ben-

efits beyond CI (Hoffmann and Turelli 1997; Hedges et al. 2008;

Teixeira et al. 2008; Brownlie et al. 2009). As discussed below,

a further constraint—roughly that 2sf < sh—is imposed by the

observation that we should find in nature only infections that can

spread spatially once they become established locally (Turelli and

Hoffmann 1991).

The dynamics in (1) are equivalent to haploid selection with

frequency-dependent fitnesses. At equilibrium, infected and un-

infected females must produce the same number of progeny, i.e.,

F = pH + (1 − p), where the left-hand side shows the frequency-

independent cost of the infection and the right-hand side shows

the frequency-dependent cost of being uninfected. This simple

observation, which leads directly to expression (2) for p̂, remains

valid with overlapping generations.
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Table 1. Glossary of notation.

Symbol Definition

bI (bU) number of female embryos produced by an I (U) female per day
F fecundity of infected females relative to uninfected females, assuming discrete generations
F I expected number of future reproductive I females produced by an I reproductive female each day, bIsI

FU expected number of future reproductive U females produced by a U reproductive female each day in the absence
of CI, bUsU

H hatch rate from incompatible fertilizations relative to compatible fertilizations, i.e., 1 − (probability of embryo
death due to CI)

I infected individuals
IA,t number of I reproductive females at time t
IE,t number of newly produced I female embryos at time t
λI (λU) asymptotic geometric growth rate of a pure I (U) population
pt frequency of I among reproductives at time t, IA,t/( IA,t+UA,t)
p̂ equilibrium frequency of I among reproductive adults
sf 1−F with discrete generations, 1−(F I/FU) with overlapping generations, the fecundity cost (or benefit) of I
sh 1−H, the intensity of CI, i.e., the probability of embryo death due to CI
sI probability that a newly produced female I embryo becomes a reproductive adult
sU probability that a newly produced female U embryo that does not perish from CI becomes a reproductive adult
sv 1 − (T̄I/T̄U)
τI (τU) length of the prereproductive period for U (I) in days beginning with fertilization, reproduction for I (U) begins

on day τI+1 (τU+1)
T̄I (T̄U) mean life span of I (U) reproductive adults, 1/(1−v I) [1/(1−vU)]
U uninfected individuals
UA,t number of U reproductive females at time t
UE,t number of newly produced U female embryos at time t
v I (vU) daily survival rate of IA (UA) reproductive adults

OVERLAPPING GENERATIONS WITHOUT AGING

Next consider a population with overlapping generations, sampled

at discrete times. For such populations, we must track numbers

rather than simply frequencies, but I will ignore stochastic ef-

fects associated with finite population size, because they simply

add unbiased noise to the deterministic dynamics (Haygood and

Turelli 2009). My analysis is motivated by the life-shortening

popcorn form of Wolbachia in D. melanogaster (Reynolds et al.

2003), which recently has been transferred to the dengue vector

Aedes aegypti and shows life-shortening in this novel host com-

parable to that seen in D. melanogaster (McMeniman et al. 2009).

Successive sample times will usually be referred to as successive

days, but an alternative time unit, “generation time,” is conve-

nient for one of the analyses below. A full life-table analysis, as in

Rasgon et al. (2003), requires daily survival rates and fecundities

for I and U individuals. It could also include age-specific patterns

of mating and the effect of infected male age on the level of CI

(see, for instance, the D. simulans data in Turelli and Hoffmann

1995). However, age-specific survival, fecundity, and mating ef-

fects are generally unknown for field populations of Drosophila

or Aedes. Moreover, the field biology of disease vectors is typ-

ically summarized by age-independent adult daily survival rates

and fecundities, and by estimates of development time from the

onset of embryogenesis to reproductive maturity (Sheppard et al.

1969; Smith et al. 2004).

For simplicity, I assume age-independent reproduction and

survival, random mating between all reproductive adults, and

equal survival rates and development times for males and fe-

males. For most insects, there is a prereproductive adult period;

for instance, egg production in Ae. aegypti requires a blood meal

that typically does not occur until day two or three of adult life.

At each time step, we consider only two types of I and U in-

dividuals: newly produced female embryos, denoted IE and UE,

and reproductive adult females, denoted IA and UA. Let τ denote

the length of the prereproductive period, beginning with fertiliza-

tion, so that reproduction begins on day τ + 1. For simplicity, I

ignore developmental stochasticity (which can be significant in

Ae. aegypti whose embryos may undergo arrested development

associated with desiccation, Christophers 1960) and assume that

τ is fixed but may differ between I and U. I assume that (1) all re-

productive adults mate at random, irrespective of age or infection

status, (2) all IA (UA) females produce bI (bU) female embryos

per day, (3) all IA (UA) reproductive adults survive to the next

day with probability v I (vU), (4) newly produced female I (U)

embryos that do not perish from CI become reproductive adults

with probability sI (sU), (5) all I (U) embryos that survive become
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reproductive adults in τI + 1 (τU + 1) days, and (6) the probability

of embryo death due to CI is 1 − H, irrespective of paternal age.

First consider the dynamics of a population with only infected

individuals. Let IE,t denote the number of newly produced female

embryos on day t, and let IA,t denote the number of reproductive

females. From the definitions, we have

IE,t = bI IA,t . (3)

On day t + 1, the number of reproductive females is

IA,t+1 = vI IA,t + sI IE,t−τI , (4)

where the first term on the right-hand side is the number of adult

female survivors from the previous day and the second is the

number of newly developed reproductive females. Substituting

(3) and defining F I = bIsI (i.e., the expected number of future

reproductive females produced by a reproductive female each

day), we obtain the recurrence equation

IA,t+1 = vI IA,t + FI IA,t−τI . (5)

Using the general theory of age-structured population growth

(specifically the Perron–Frobenius theorem, see Caswell 1989,

Ch. 4), we know that independent of initial conditions, populations

governed by (5) will ultimately grow geometrically, so that

IA,t = IA,0λ
t
I, (6)

where λI is the largest positive solution of the characteristic equa-

tion

λτI+1 = vIλ
τI + FI. (7)

A monomorphic U population would follow (5) with v I, F I and τI

replaced by vU, FU and τU; we denote its asymptotic geometric

growth rate by λU.

In polymorphic populations, we must account for CI. The

number of infected reproductive females still follows (5), because

the hatch rate of I offspring does not depend on paternal infection

status. In contrast, the relative hatch rate for U embryos is 1

if the father is U, but only H if the father is I. Let pt denote

the frequency of infected mating adults at time t. Under random

mating, the number of U adults follows:

UA,t+1 = vUUA,t + FU(H pt−τU + 1 − pt−τU )UA,t−τU

= vUUA,t + FU(1 − sh pt−τU )UA,t−τU , (8)

where sh = 1 − H as in (1). If we express pt +1 as IA,t+1/(IA,t+1 +
UA,t+1), using (5) and (8), we get an intractable expression that

depends on values for IA,s and UA,s at times from t back to

s = min(t − τU, t − τI). To produce a simple and interpretable

result, we first assume demographic equilibrium, so that the mixed

population is growing geometrically, and then recognize that the

relevant geometric growth rate is λI. The logic is as follows. If we

hold pt constant, as expected at equilibrium, we can express the

asymptotic growth rate of the U population as the largest positive

solution of

λτU+1 = vUλτU + FU(1 − sh p), (9)

which we denote λU(p). Given that the effective fecundity of U

females decreases as p increases, it follows that λU(p) decreases

as p increases. For the frequency of I to be at a polymorphic

equilibrium, the U and I populations must be growing at the same

geometric rate, i.e., there must be a p value for which

λU(p) = λI. (10)

As discussed below, if λU(0) = λU < λI (analogous to F > 1 for

the discrete-generation model), we expect the infection to spread

from any initial frequency; whereas if λU(1) > λI, the infection

should never be able to stably spread (cf. Charlesworth 1984, Sec.

4.3.1).

The equilibrium criterion (10) is relatively uninformative,

because the λ are defined implicitly as solutions of the character-

istic equations (7) and (9). However, the simple observation made

for discrete-generation equilibria remains valid: at equilibrium,

the per capita changes of I and U females between successive

time steps must be equal, i.e.,

IA,t+1

IA,t
= UA,t+1

UA,t
. (11)

This requires

vI + FI
IA,t−τI

IA,t
= vU + FU(1 − sh p)

UA,t−τU

UA,t
. (12)

Recognizing that at equilibrium both groups must be grow-

ing exponentially at rate λI, we have IA,t−τI/IA,t = λ
−τI
I and

UA,t−τU/UA,t = λ
−τU
I . Substituting into (12), we obtain

vI + FIλ
−τI
I = vU + FU(1 − sh p)λ−τU

I , (13)

so that

p̂ = (vU − vI)λ
τU
I + (FU − FIλ

τU−τI
I )

FUsh
. (14)

Equation (14) is an overlapping-generation analog of the

Caspari and Watson (1959) result p̂ = sf /sh , but there are fun-

damental differences in the underlying dynamics that complicate

its interpretation. The key difference is that recursions (5) and

(8) are multidimensional. Hence, their behavior cannot be sum-

marized with simple inequalities analogous to the assertion, valid

for (1), that initial frequencies above p̂ lead to pt → 1 as t in-

creases. To highlight this difference, note that if 0 < p̂< 1, it is

possible to start with no infected reproductive adults, p0 = 0, but

have the infection ultimately take over the population, pt → 1,
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if enough prereproductives are infected. Assuming τI ≥ τU, we

must specify IA,t and UA,t for τI + 1 successive time periods

to iterate the model described by (5) and (8). We obtained the

one-dimensional result (14) only by assuming demographic equi-

librium, specifically geometric growth of both IA,t and UA,t at

rate λI, and assuming that the same (equilibrium) infection fre-

quency held for all time periods. More generally, there is a sur-

face in the [2(τI + 1) − 1]-dimensional space of possible values

of the vector {IA,−τI , UA,−τI , IA,−τI +1, UA,−τI +1, . . . , IA,0, UA,0}
that separates initial values leading to asymptotic fixation of the

infection versus asymptotic loss. (Note that the dimension of the

space is reduced by 1 because the sum of all of the initial values

can be scaled arbitrarily and not affect the final outcome, only

the relative frequencies of these 2(τI + 1) initial densities mat-

ter.) Equation (14) is an informative, but incomplete indicator of

asymptotic behavior.

These ideas are illustrated in Figure 1. Both panels are based

on iterating (5) and (8) with the same parameter values (corre-

sponding to plausible guesses for Ae. aegypti in the field with and

without life-shortening Wolbachia, based on laboratory estimates

from McMeniman et al. 2009 and S. L. O’Neill, pers. comm.):

vU = 0.850, v I = 0.752, FU = 0.269, F I = 0.255, H = 0, and

τI = τU = 19. These produce λU = 1.023, λI = 1.001, and

p̂ = 0.422. For Figure 1A, the initial population sizes at succes-

sive time points were assumed to increase geometrically at rate

λI, and the initial frequency of the infection was assumed to be

the same over all times. The line is the unstable point, p̂ = 0.422,

given by (14), and Figure 1A shows that for an initial frequency

just above p̂, the infection frequency increases, whereas for an ini-

tial frequency just below p̂, pt decreases. This is the precise—and

restrictive—sense in which (14) provides the unstable equilibrium

frequency.

In contrast, Figure 1B shows the oscillatory adult infection-

frequency dynamics resulting when a monomorphic U population,

growing geometrically at rate λU, is perturbed by introducing a

large number of infected reproductive adults on a single day to

produce an initial adult infection frequency far above p̂. Because

all prereproductives are initially uninfected, the adult infection

frequency plummets below p̂ as the U prereproductives reach

sexual maturity. The ultimate fate of the infection depends on the

initial perturbation, and there are several notable features of the

dynamics. The dampened fluctuations reflect the approach to a

new demographic equilibrium (or “stable age distribution,” SAD).

Note that the adult infection frequency, pt, fluctuates far above and

below the unstable point given by (14), and this is seen both for

initial conditions that lead to ultimate fixation and ultimate loss

of the infection. The starting values were chosen using a heuristic

invasion condition that will be described elsewhere. Because of

the complexity of the transient dynamics away from SAD, it is

difficult to provide a simple analytical formula, analogous to (14),
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Figure 1. Dynamics of adult infection frequencies based on iter-

ating recursions (5) and (8). For both panels, vU = 0.850, v I = 0.752,

FU = 0.269, F I = 0.255, H = 0, and τ I = τU = 19, corresponding

to λU = 1.023, λI = 1.001, and p̂ = 0.422 (depicted as a horizon-

tal line in both panels). The two panels differ only in the initial

conditions. Panel A assumes that the total population is initially

growing geometrically at rate λI = 1.001 and that the initial adult

infection frequency is equal for times 1 to 20 (=τ I + 1). The recur-

sions are iterated from t = 21 until t = 365. The red curve, depicting

loss of the infection, corresponds to an initial infection frequency

of 0.415; the green curve, depicting approach to fixation, corre-

sponds to an initial infection frequency of 0.43. Panel B assumes

that initially the U population is growing geometrically at rate

λU = 1.023. This equilibrium U population is perturbed by intro-

ducing only I reproductive adults at t = 21. The green trajectory,

leading to fairly rapid fixation of I, corresponds to an initial adult

infection frequency of 0.89; the blue trajectory, which is just above

the critical introduction level that leads to fixation of I, starts with

0.875; and the red, which produces loss of I, starts with 0.86.

for the perturbations of a single age class that will lead to ultimate

fixation of the infection.

Conditions for infection fixation, loss, and bistability
Although the dynamics show complex dependence on the high-

dimensional initial conditions, some general statements can be

made about the long-term fate of infection frequencies. In par-

ticular, we can specify when CI-causing infections can always
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invade, when they can never invade, and when they can invade

only for some initial conditions (bistability). First, note that if

λU(0) = λU < λI, the infection must ultimately invade once it

has been introduced. We will not present a formal proof (see

Charlesworth 1984, Sec. 4.3.1 and Appendix 2), but the heuristic

argument is as follows. After introduction, the infected population

will approach its SAD. If the initial infection frequency is very

low, there will be very few incompatible matings. Hence, we will

essentially have two competing haploid populations, one growing

at rate λU(0) = λU, the other growing at rate λI > λU. Thus,

the infection frequency will increase, and as it does, λU(p) will

decline, leading to an even greater advantage for I. Conversely if

λU(1) > λI, the infection must vanish; because even when they

are very rare, the uninfected individuals will be growing at a ge-

ometric rate that exceeds that of the infecteds. Finally, if (10)

has a solution between 0 and 1, meaning that λU(0) = λU > λI

but λU(1) < λI, there are some initial conditions from which the

infection will spread to fixation and others from which it is lost.

Explicit constraints on the parameters that lead to bistability can

be obtained from (14) using the inequalities 0 < p̂ < 1.

Special cases
To understand how various demographic factors affect p̂ and how

(14) relates to the Caspari and Watson (1959) result, p̂ = sf /sh ,

it is useful to consider some special cases.

Discrete generations
We can collapse recursions (5) and (8) to model nonoverlapping

generations by setting τU = τI = 0, corresponding to embryos

becoming reproductive adults in one time step, and setting vU =
v I = 0, corresponding to no adults surviving for more than one

period of reproduction. In this case, the sample-time index t in (5)

and (8) is generation number. With these values, (14) becomes

p̂ = FU − FI

FUsh
= sf /sh, (15)

Caspari and Watson’s (1959) result. Hence, (5) and (8) generalize

(1).

Constant population size: λI = 1

When λI = 1, (14) becomes

p̂ = (vU − vI) + (FU − FI)

FUsh
= av + sf

sh
, (16)

where av = (vU − v I)/FU, and sf = 1 − (F I/FU) is a direct analog

of the fecundity-cost parameter in (1). With constant reproductive-

adult survival rates, v, the mean life expectancy of reproductive

adults is 1/(1 − v); when λI = 1, (7) implies that 1 = v I + F I.

Thus,

av = vU − vI

FU
=

(
vU − vI

FI

) (
FI

FU

)
=

(
vU − vI

1 − vI

) (
1 − sf

)

= sv

(
1 − sf

)
, and (17a)

p̂ = sv + sf − svsf

sh
, (17b)

where sv = 1 − (T̄I/T̄U) and T̄I (T̄U) is the mean life span of in-

fected (uninfected) reproductive adults. Note that sv, the fractional

reduction of life length for infected individuals, is precisely anal-

ogous to sf , the fractional reduction in daily “effective fecundity.”

This special case illustrates the similar consequences of infection

costs associated with reduced fecundity versus reduced viability.

Conversely, (16) shows how positive Wolbachia effects on fe-

cundity (Weeks et al. 2007; Brownlie et al. 2009) can counteract

negative viability effects and lower the unstable equilibrium.

Equal fecundities: FU = FI

Equation (14) becomes

p̂ = avλ
τU
I + 1 − λ

τU−τI
I

sh
, (18)

where av = (vU − vI)/F = sv(1 − vI)/F and sv = 1 − (T̄I/T̄U)

as in (17). If the infection does not affect development time (i.e.,

τU = τI = τ), this reduces to

p̂ = avλ
τ
I /sh, (19)

illustrating that longevity effects are weighted by the population

growth rate and development time.

Equation 19 may suggest that p̂ will generally increase with

λI, but this ignores the joint dependence of λI and av on the

parameters F and v I. For instance, if we hold v I, sv and τ fixed

and increase λI by raising F, we can use (7) to find the F that

produces the desired λI. Substituting into (19), we find that p̂ =
sv(1 − vI)/[sh(λI − vI)], which clearly decreases as λI increases.

Equal longevities, vU = vI

Equation (14) becomes

p̂ = FU − FIλ
τU−τI
I

FUsh
= 1 − (1 − sf )λ

τU−τI
I

sh
, (20)

with sf as in (16). If the infection does not affect development

time (τI = τU), (20) reduces to the Caspari and Watson (1959)

result, p̂ = sf /sh , irrespective of the population growth rate. As

discussed below, this simplification may help explain why Wol-

bachia infection-frequency dynamics in California populations of

Drosophila simulans, which have on the order of 12–15 overlap-

ping generations per year, could be reasonably approximated by

a discrete-generation analysis (Turelli and Hoffmann 1995).

OVERLAPPING GENERATIONS WITH

AGE-DEPENDENT EFFECTS

With age-dependent infection effects, the model has many pa-

rameters and does not seem to produce a simple result analogous

to (14), even with random mating. Nevertheless, the principles

that led to (14) and the eigenvalue condition for bistability, (10),

remain valid after some clarification. With a full age-structured
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model, the dynamics (5) and (8) can be recast as iterations of

two life-table matrices in which the effective fecundities for the

U females depend on the pattern of mating among age classes,

age-specific CI effects, and age-specific infection frequencies (see

Rasgon et al. 2003). With a fixed vector of age-specific infection

frequencies for reproductive adults, denoted p, and any pattern of

mating, we can calculate how CI alters the effective fecundity of

U females who are i days old, denoted FU,iH(p), by simply aver-

aging the CI values over the appropriate male ages and infection

frequencies. Using the life-table parameters, mating pattern, and

CI parameters, we can calculate λI and λU(p) for any fixed p.

As in the age-independent case, to get a relatively simple re-

sult for the unstable equilibrium, we consider a mixed population

growing geometrically at rate λI. At this demographic equilib-

rium, all age classes grow geometrically at rate λI. If I adults die

faster than U adults, infection frequency will decline with repro-

ductive adult age. However, if we fix the infection frequency for

the youngest age class of reproductive adults, denoted p1, we can

use the I and U viabilities to calculate infection frequencies for

all adult age classes. Hence, at this demographic equilibrium, we

can view the full distribution of adult infection frequencies, p, as

a function of a single variable, p1. Thus, we can replace (10) by

λU(p1) = λI, (21)

where the asymptotic growth rates are now obtained from the

life-table matrices for U and I.

The condition for bistability, i.e., for the fate of the infection

frequency to depend on initial conditions, is that (21) must have a

solution between 0 and 1. If λU(0) < λI, the infection will always

invade, whereas if λU(1) > λI, the infection will never stably

invade. By writing explicit recursions for newly produced I and U

reproductives in successive days, we can find an equation for p̂1

that is analogous to (14), but much less obviously informative.

Discussion
As shown above, a simple, analytically tractable model leads to a

concise formula for the unstable equilibrium infection frequency,

(14), that captures the quantitative effects of life-table changes

attributable to CI-causing microbes. The motivation for this anal-

ysis is a life-shortening Wolbachia whose spread could modify

the age structure of host insect populations, specifically disease

vectors such as Ae. aegypti that transmit disease only at the old-

est adult ages (Brownstein et al. 2003; Rasgon et al. 2003). The

position and properties of the unstable equilibria are relevant to

several questions about both natural Wolbachia infections and

proposed applications. Central to these considerations is whether

an infection will tend to spread spatially once it is established in

a sufficiently large patch. A more complete treatment of spatial

dynamics will be presented elsewhere. Here I outline some of

the biological issues relating the position of the unstable point to

conditions for spatial spread.

SPATIAL SPREAD

First consider the discrete-time model (1). Suppose we begin with

a linear array of populations, with all of those to the left of some

point infected and all of those to the right uninfected. What hap-

pens if the adjacent populations begin exchanging migrants? The

infection can either advance to the right, retreat to the left or re-

main relatively fixed in space. Mathematical predictions depend

on the model of migration and the approximations used to de-

scribe the bistable dynamics. In analyzing their data on the spatial

spread of Wolbachia in California populations of D. simulans,

Turelli and Hoffmann (1991) followed Barton (1979) and used

a continuous-time, continuous-space, reaction-diffusion approx-

imation to argue that a “traveling wave” of advancing infection

is expected if p̂ < 1/2. This follows directly from Barton’s (1979)

prediction that for underdominant chromosome arrangements,

e.g., inversions or translocations in which heterokaryotypes are

less fit than either homokaryotype, the more fit homokaryotype

(with p̂ < 1/2) is expected to spread spatially. This result can be

generalized from a large body of formal mathematics concerning

reaction-diffusion models with bistable dynamics (summarized

in Fife (1979, esp. Ch. 4) and Hofbauer (1999)). These analyses

assume a continuous-time description for the temporal dynamics

and a spatially continuous population with an effectively Gaus-

sian distribution of dispersal distances. If the continuous-time

approximation for the frequency dynamics (1) is described by

dp/dt = f (p), (22)

the temporal-spatial dynamics of the infection frequency can be

approximated by a reaction-diffusion model of the form

∂p(x, t)

∂t
= f (p) + σ2

2

∂2 p(x, t)

∂x2
, (23)

where x denotes the one-dimensional spatial variable and σ is pro-

portional to absolute dispersal distances. This model possesses a

traveling wave solution (with invariant shape and constant veloc-

ity, cf. Fisher 1937) in which the infection spreads whenever
∫ 1

0
f (p)dp > 0 (24)

(see Fife 1979, Ch. 4 for proof). Turelli and Hoffmann (1991) used

a crude approximation that effectively ignored the denominator of

(1), so that f (p) = sh p(1 − p)(p − p̂). In this case, (24) implies

that the infection will tend to spread spatially if and only if the

unstable point satisfies p̂ < 1/2.

More careful approximations indicate that the condition

p̂ < 1/2 is somewhat conservative, in that unstable equilibria

slightly above 1
2 can be compatible with spatial spread. These ap-

proximations can be obtained either by using a continuous-time
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description for Wolbachia dynamics that includes a normalization

term analogous to the denominator in (1) or by modeling the inter-

action of CI and migration in discrete time. This latter approach

approximates the temporal-spatial infection frequency dynamics

by an integro-difference equation of the form

pt+1(x) =
∫ ∞

−∞
k(x − y)h(pt (y))dy, (25)

where pt (x) denotes the infection frequency at point x in a one-

dimensional continuous habitat, h(pt (x)) denotes the local de-

terministic dynamics for infection frequency (e.g., the recursion

pt+1(x) = h(pt (x)) that produces Eq. 1), and k(x) is a symmet-

ric “dispersal kernel” that describes migration distances. Wang

et al. (2002) found that (under minimal restrictions on k(x)) the

infection tends to spread spatially as a traveling wave if and only

if

∫ 1

0
[h(p) − p]dp > 0. (26)

This result is directly analogous to (24), because h(p) − p = �p.

Using model (1), the constraint that (26) imposes on sf is close

to p̂ < 1/2 when sh is small, but the discrepancy increases with

sh. Let p∗ denote the critical unstable equilibrium value produced

by (26). With sh = 0.1, (26) requires sf < 0.05026 (equivalent

to p∗ = 0.5026); whereas when sh = 1, (26) requires sf < 0.545

(equivalent to p∗ = 0.545).

These alternative approximations are highly idealized de-

scriptions of the population biology of insects such as D. simu-

lans and Ae. aegypti, whose population dynamics involve, among

other things, density regulation at various life stages and season-

ally varying parameter values. Hence, we consider the values of

the critical point p∗ that emerge from alternative approximations

as rough guides to the conditions under which CI-causing infec-

tions will spread spatially. If p̂, the predicted local, nonspatial,

unstable equilibrium is below 0.5, we expect the infections to

spread spatially once they are established locally, whereas if the

predicted local, nonspatial, unstable equilibrium, p̂, is well above

0.5, e.g., 0.6, we do not expect spatial spread.

As shown numerically by Schofield (2002), the wave speed

of an advancing CI-causing infection can depend critically on the

form of the dispersal kernel, with faster propagation produced by

long-tailed (leptokurtic) dispersal. This reflects a general property

of traveling wave models (Wang et al. 2002). In contrast, condition

(26) from Wang et al. (2002) shows that the tendency to spread is

essentially independent of the shape of the dispersal function.

Spatial dynamics are much more difficult to analyze for

age-structured populations (but see Neubert and Caswell 2000).

Nevertheless, for age-independent, age-structured population dy-

namics in space, I conjecture that the position of the unstable

point given by (14) can provide a useful guide as to whether

spatial spread is likely to occur. This has been demonstrated

for a continuous-time approximation of age-independent effects

(S. Schreiber, pers. comm.).

As noted by Barton (1979) (also see Barton and Hewitt 1989),

spatial waves associated with bistable dynamics have two im-

portant features that distinguish them from those produced by

“monostable dynamics” in which frequencies and/or densities

tend to increase from all initial values, as in Fisher’s (1937) model

of the spread of a uniformly favored allele. The same phenomena

are found in ecological models including Allee effects—reduced

per capita growth rates at low population density (reviewed in

Lewis and Kareiva 1993; Taylor and Hastings 2005). First, un-

like “Fisherian waves,” associated with monostable dynamics,

which can be initiated by arbitrarily small initial patches carrying

the favored allele (or cost-free, CI-causing infection), “Barto-

nian waves,” associated with bistable dynamics, will propagate

only if the infection (or favored underdominant allele) is ini-

tially established at a sufficiently high frequency (which must be

above the unstable equilibrium) in a sufficiently large patch. Sec-

ond, unlike Fisherian waves, which merely alter their speed when

they encounter environmental inhomogeneities, such as reduced

population density or barriers to dispersal, Bartonian waves can

be stopped by such inhomogeneities (Barton 1979). Moreover,

the magnitude of the inhomogeneity needed to halt spread is

proportional to the distance between the actual unstable point,

p̂, and the critical value, p∗, produced by (24) or (26). Con-

sequently, as p̂ approaches p∗, the expected wave speed slows

to zero.

IMPLICATIONS FOR CI-CAUSING INFECTIONS

IN NATURE

Several Wolbachia infections have been found in nature that re-

duce fecundity, at least under some conditions; but no Wolbachia

with significant life-shortening effects analogous to Min and Ben-

zer’s (1997) infection (wMelPop) have been collected in the wild.

Is this surprising? Note that in the lab, wMelPop decreases life

length by about one half. If such dramatic life-shortening ef-

fects were seen in nature, our results, in particular (16) and (17),

lead to unstable points near 1
2 even with complete CI (H = 0).

Thus, spatial spread would be at best extremely slow, unless there

were favorable CI-independent Wolbachia effects that ameliorate

the deleterious effects of life-shortening. Hence, it’s not surpris-

ing that wMelPop was discovered in the laboratory, not nature.

Moreover, because CI falls very rapidly with male age in D.

melanogaster (Hoffmann et al. 1998), such an infection could not

take over a population with uninfecteds, no matter how many were

introduced. Because the frequency-independent life-shortening is

so much greater than the reproductive advantage that accrues from

the very low level of CI in this species, such infections can persist

only in monomorphic laboratory populations.
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Our simplified age-structure analysis provides some insight into

the fact that a discrete-generation model with three parameters (CI

intensity, fecundity effects and imperfect maternal transmission;

Hoffmann et al. 1990) reasonably approximates the population dy-

namics, equilibrium frequencies and evolution of the CI-causing

Wolbachia infection in California populations of Drosophila sim-

ulans (Turelli 1994; Turelli and Hoffmann 1995; Weeks et al.

2007; Haygood and Turelli 2009). Laboratory experiments have

found no appreciable effects of this infection on either develop-

ment time or adult longevity (Hoffmann et al. 1990). Because

Wolbachia effects in these populations seem to be magnified in

the laboratory relative to nature (Hoffmann et al. 1990; Turelli and

Hoffmann 1995), it is reasonable to conjecture that neither devel-

opment time nor viability are affected in the wild. Without such

effects, our model produces the same equilibrium, (20), with and

without overlapping generations. The analogy is not precise, be-

cause the intensity of CI in D. simulans varies significantly with

male age (Hoffmann et al. 1986; Turelli and Hoffmann 1995).

Nevertheless, result (20) suggests why age-structure may not be

critical to understanding these populations.

POSSIBLE APPLICATIONS

This analysis was motivated by a proposal to use life-shortening

Wolbachia to modify age structures of the mosquito populations

that transmit dengue fever (Brownstein et al. 2003; Rasgon et al.

2003). Large-scale cage trials are currently underway to deter-

mine whether the mosquitoes infected with life-shortening Wol-

bachia will satisfy the conditions that will allow these infections to

spread. Our analyses indicate the obstacles faced by this strategy.

From (16) and (17), we find that if the infections roughly halve

life span, as seen under some laboratory conditions (McMeniman

et al. 2009), the unstable equilibrium would be near 1
2 . Hence,

unless life-shortening is less extreme under field conditions or

there are beneficial Wolbachia effects that reduce the unstable

equilibrium below that predicted from life-shortening alone, the

expected spread in nature would be at best very slow. However, if

Wolbachia without significant life-shortening effects can directly

inhibit the growth of the dengue RNA viruses in their vectors

(as suggested by results in D. melanogaster, Hedges et al. 2008;

Teixeira et al. 2008), the introduction threshold for such “protec-

tive” Wolbachia should be relatively low.

If life-shortening infections are established in nature, the

maternally inherited Wolbachia should evolve to minimize fit-

ness costs to their hosts (Prout 1994; Turelli 1994; Haygood and

Turelli 2009). Rapid evolution of Wolbachia towards mutualism

has been observed in California populations of D. simulans—on

the order of a decade or two (Weeks et al. 2007), but this rapid evo-

lution may have required a much longer period in which genetic

variation accumulated in the Wolbachia population. Comparative

genomic analyses are now underway to describe variation among

the Wolbachia infecting California D. simulans. In contrast to the

unknown initial conditions that produced rapid Wolbachia evo-

lution in California, field releases of laboratory-transfected Ae.

aegypti will begin with a single Wolbachia type introduced into a

few embryos via microinjection (McMeniman et al. 2009). Thus,

we might expect some lag before evolutionary amelioration of

host-deleterious effects. This evolution would also be delayed if

life-shortening effects were restricted to the oldest age classes,

which contribute little to future generations (cf. Read et al. 2009).

At the opposite extreme, if Wolbachia without significant life-

shortening effects can directly inhibit growth of dengue viruses

in vectors, Wolbachia evolution towards mutualism would tend to

help rather than hinder disease control.

Given the ubiquity of Wolbachia infections and the benign

nature of age-structure modification relative to attempts to eradi-

cate vector populations, life-shortening Wolbachia provide an at-

tractive potential tool to deal with insect disease-vectors and crop

pests whose deleterious effects manifest only late in adult life.

Even more promising are introductions of Wolbachia that have

minimal effects on life-table parameters, but reduce or eliminate

the deleterious effects of their hosts.
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